<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-cite-prefix">On 03.03.2025 06:16, David G Dixon via
      Synth-diy wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:212F4569F56F46CC93F343EC3E9B6FCC@david78c70950b">
      <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
    </blockquote>
    <blockquote type="cite"
      cite="mid:212F4569F56F46CC93F343EC3E9B6FCC@david78c70950b">
      <div><span class="083460805-03032025">My question is this: given
          that the 2N390X transistors have higher transition frequencies
          and lower collector capacitances than the old Japanese
          transistors (according to All Transistors), why should the
          latter give significantly faster saw reset times?  What is the
          actual figure of merit for this?</span></div>
      <div><span class="083460805-03032025"></span> <br>
      </div>
    </blockquote>
    This is not caused by the capacitances and inductivities alone.
    <p>There is a time required to remove all the charges in the base
      area when you turn it off. (mainly due to recombination IIRC)<br>
    </p>
    <p>This creates a turn off delay in a bipolar transistor called the
      storage time. <br>
    </p>
    <p><br>
    </p>
    <p>The question is how accurately this is modeled in simulations. </p>
    <p><br>
    </p>
    <p>My preference for this style of VCO is to use switching
      transistors. <br>
    </p>
    <p>These have low Vce(sat) and are optimized for (drum roll)
      switching.<br>
    </p>
    <br>
    <p>Best,</p>
    <p> René<br>
    </p>
    <br>
    <pre class="moz-signature" cols="72">--
<a class="moz-txt-link-abbreviated" href="mailto:synth@schmitzbits.de">synth@schmitzbits.de</a>
<a class="moz-txt-link-freetext" href="http://schmitzbits.de">http://schmitzbits.de</a></pre>
  </body>
</html>