<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family:Arial,Helvetica,sans-serif; font-size:10pt; color:rgb(0,0,0)">
As very recently posted, an analog integrator SEEMS to have a transfer function T(s) = A/sRC where RC is a time constant and A is a SUPPOSED ”gain”, BUT it is a one-parameter term (A/RC)(1/s) – an unending/unbending 45 degree slope which can be thought of as
varying up/down (gain) OR left/right (frequency):</div>
<div style="font-family:Arial,Helvetica,sans-serif; font-size:10pt; color:rgb(0,0,0)">
<br>
</div>
<div style="font-family:Arial,Helvetica,sans-serif; font-size:10pt; color:rgb(0,0,0)">
<br>
<div><a href="http://electronotes.netfirms.com/AN353.pdf" id="LPlnk277160">http://electronotes.netfirms.com/AN353.pdf</a></div>
<div><br>
</div>
<div><br>
</div>
<div>This simply implies that the denominator of a S-V filter changes from a normalized s^2 +(1/Q)s + 1 to s^2 + (A1/Q)s + A1A2 where the integrator gains change from 1 to A1 and A2 respectively, -1/Q is feedback VB to input, and the feedback from VL to input
is -1. Just a modified 2nd-order, and the quadratic equation yields the exact new poles (hence the exact SHAPE of the frequency response) and corresponding (re-interpreted?) performance parameters. [For example, Omega-Zero moves from 1 to sqrt(A1A2) as someone
here offered.] Everything should follow easily, obviously, and correctly. No magic in this - right? </div>
<div><br>
</div>
<div><br>
</div>
<div>-Bernie</div>
<div><br>
</div>
<div><br>
</div>
<br>
<br>
</div>
</body>
</html>